MATH 2050B Tutorial 1

Sept 14, 2016

Exercise 1. If $a \in \mathbb{R}$, prove the following:
(a) $-(-a)=a$
(b) $(-1)(-1)=1$

Exercise 2. Let $S=[a, b)$, where $a<b$. Determine the supremum and infimum of S. Justify your answer.

Exercise 3. Let $S=\left\{\frac{n}{2^{n}}: n \in \mathbb{N}\right\}$. Show that $\sup S=\frac{1}{2}$. Also think about what $\inf S$ is. (Hint:Use the binomial theorem to obtain an estimate of $\frac{n}{2^{n}}$).

Exercise 4. Let A and B be bounded nonempty subset of \mathbb{R}, and let $A+B:=\{a+b: a \in$ $A, b \in B\}$. Prove that

$$
\sup (A+B)=\sup (A)+\sup (B) \quad \text { and } \quad \inf (A+B)=\inf (A)+\inf (B)
$$

Exercise 5. Let X and Y be non-empty sets and let $h: X \times Y \rightarrow \mathbb{R}$ have bounded range in \mathbb{R}. Let $f: X \rightarrow \mathbb{R}$ and $g: Y \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\sup \{h(x, y): y \in Y\} \quad g(y)=\inf \{h(x, y): x \in X\}
$$

Prove that

$$
\sup \{g(y): y \in Y\} \leq \inf \{f(x): x \in X\}
$$

