MATH 2050B Tutorial 1

Sept 14, 2016

Exercise 1. If $a \in \mathbb{R}$, prove the following:

- (a) -(-a) = a
- **(b)** (-1)(-1) = 1

Exercise 2. Let S = [a, b), where a < b. Determine the supremum and infimum of S. Justify your answer.

Exercise 3. Let $S = \{\frac{n}{2^n} : n \in \mathbb{N}\}$. Show that $\sup S = \frac{1}{2}$. Also think about what $\inf S$ is. (Hint:Use the binomial theorem to obtain an estimate of $\frac{n}{2^n}$).

Exercise 4. Let A and B be bounded nonempty subset of \mathbb{R} , and let $A + B \coloneqq \{a + b : a \in A, b \in B\}$. Prove that

$$\sup(A+B) = \sup(A) + \sup(B)$$
 and $\inf(A+B) = \inf(A) + \inf(B)$

Exercise 5. Let X and Y be non-empty sets and let $h: X \times Y \to \mathbb{R}$ have bounded range in \mathbb{R} . Let $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$ be defined by

$$f(x) = \sup\{h(x, y) : y \in Y\} \qquad g(y) = \inf\{h(x, y) : x \in X\}$$

Prove that

$$\sup\{g(y): y \in Y\} \le \inf\{f(x): x \in X\}$$